Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Generative models development for fast simulation in ALICE CERN

2020/39/O/ST6/01478

Keywords:

neural networks simulation high energy physics

Descriptors:

  • ST6_11: Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
  • ST6_12: Scientific computing, simulation and modelling tools
  • ST2_2: Particle physics

Panel:

ST6 - Computer science and informatics: informatics and information systems, computer science, scientific computing, intelligent systems

Host institution :

Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych

woj.

Other projects carried out by the institution 

Principal investigator (from the host institution):

prof. Przemysław Stefan Rokita 

Number of co-investigators in the project: 2

Call: PRELUDIUM BIS 2 - announced on 2020-09-15

Amount awarded: 441 700 PLN

Project start date (Y-m-d): 2021-10-01

Project end date (Y-m-d): 2025-09-30

Project duration:: 48 months (the same as in the proposal)

Project status: Pending project

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Information in the final report

  • Articles in post-conference publications (5)
  1. Selectively increasing the diversity of GAN-generated samples
    Authors:
    Jan Dubiński, Kamil Deja, Sandro Wenzel, Przemysław Rokita, Tomasz Trzciński
    Conference:
    Neural Information Processing (rok: 2023, tom: ICONIP: International Conference on Neural Information Processing 2022, strony: - przyjęta do publikacji), Wydawca: Springer
    Data:
    konferencja 22/11/2022 - 26/11/2022
    Status:
    Accepted for publication
    DOI:
    10.48550/ARXIV.2207.01561 - link to the publication
  2. Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders
    Authors:
    Jan Dubiński, Stanisław Pawlak, Franziska Boenisch, Tomasz Trzcinski, Adam Dziedzic
    Conference:
    Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track (rok: 2024, tom: Conference on Neural Information Processing Systems, strony: 55237-55259), Wydawca: Curran Associates, Inc.
    Data:
    konferencja 10.12.2023-16.12.2023
    Status:
    Published
  3. Selectively increasing the diversity of GAN-generated samples
    Authors:
    Jan Dubiński, Kamil Deja, Sandro Wenzel, Przemysław Rokita, Tomasz Trzciński
    Conference:
    Neural Information Processing (rok: 2023, tom: ICONIP: International Conference on Neural Information Processing 2022, strony: - przyjęta do publikacji), Wydawca: Springer
    Data:
    konferencja 22/11/2022 - 26/11/2022
    Status:
    Accepted for publication
    DOI:
    10.48550/ARXIV.2207.01561 - link to the publication
  4. Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN
    Authors:
    Jan Dubiński, Kamil Deja, Sandro Wenzel, Przemysław Rokita, Tomasz Trzciński
    Conference:
    AIP Conference Proceedings (rok: 2023, tom: The International Workshop on Machine Learning and Quantum Computing Applications in Medicine and Physics, strony: - przyjęta do publikacji), Wydawca: AIP Publishing
    Data:
    konferencja 13/09/2022 - 16/09/2022
    Status:
    Accepted for publication
    DOI:
  5. Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN
    Authors:
    Jan Dubiński, Kamil Deja, Sandro Wenzel, Przemysław Rokita, Tomasz Trzciński
    Conference:
    AIP Conference Proceedings (rok: 2023, tom: The International Workshop on Machine Learning and Quantum Computing Applications in Medicine and Physics, strony: - przyjęta do publikacji), Wydawca: AIP Publishing
    Data:
    konferencja 13/09/2022 - 16/09/2022
    Status:
    Accepted for publication
    DOI: