Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

A novel multiphysics multiscale model of field-assisted sintering technology

2019/35/B/ST8/03158

Keywords:

powder sintering field-assisted sintering technology multiscale modelling multiphysics discrete element method

Descriptors:

  • ST8_3: Computational engineering, computer-aided modelling, design and manufacturing

Panel:

ST8 - Production and processes engineering: modelling, product design, process design and control, construction methods and engineering, power units and systems

Host institution :

Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk

woj.

Other projects carried out by the institution 

Principal investigator (from the host institution):

prof. Jerzy Rojek 

Number of co-investigators in the project: 8

Call: OPUS 18 - announced on 2019-09-16

Amount awarded: 1 414 800 PLN

Project start date (Y-m-d): 2020-08-12

Project end date (Y-m-d): 2025-08-11

Project duration:: 60 months (the same as in the proposal)

Project status: Pending project

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Information in the final report

  • Publication in academic press/journals (15)
  1. Thermal conductivity analysis of porous NiAl materials manufactured by spark plasma sintering: Experimental studies and modelling
    Authors:
    S.Nosewicz, G.Jurczak, T.Wejrzanowski, S.Haj Ibrahim, A.Grabias, W.Węglewski, K.Kaszyca, J.Rojek, M.Chmielewski,
    Academic press:
    International Journal of Heat and Mass Transfer (rok: 2022, tom: 194, strony: 123070), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.ijheatmasstransfer.2022.123070 - link to the publication
  2. Evaluation of effective thermal conductivity of sintered porous materials using an improved discrete element model
    Authors:
    Fatima Nisar, Jerzy Rojek, Szymon Nosewicz, Kamil Kaszyca, Marcin Chmielewski
    Academic press:
    Powder Technology (rok: 2024, tom: 437, strony: 119546), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2024.119546 - link to the publication
  3. Discrete element thermal conductance model for sintered particles
    Authors:
    Jerzy Rojek, Radosław Kasztelan, Ramakrishnan Tharmaraj
    Academic press:
    Powder Technology (rok: 2022, tom: 405, strony: 117-521), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2022.117521 - link to the publication
  4. Discrete element thermal conductance model for sintered particles
    Authors:
    Jerzy Rojek, Radosław Kasztelan, Ramakrishnan Tharmaraj
    Academic press:
    Powder Technology (rok: 2022, tom: 405, strony: 117-521), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2022.117521 - link to the publication
  5. Thermal conductivity analysis of porous NiAl materials manufactured by spark plasma sintering: Experimental studies and modelling
    Authors:
    S.Nosewicz, G.Jurczak, T.Wejrzanowski, S.Haj Ibrahim, A.Grabias, W.Węglewski, K.Kaszyca, J.Rojek, M.Chmielewski,
    Academic press:
    International Journal of Heat and Mass Transfer (rok: 2022, tom: 194, strony: 123070), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.ijheatmasstransfer.2022.123070 - link to the publication
  6. Combined EBSD and computer assisted quantitative analysis of the impact of spark plasma sintering parameters on the structure of porous materials
    Authors:
    S.Nosewicz, G.Jurczak, W.Chromiński, J.Rojek, K.Kaszyca, M.Chmielewski
    Academic press:
    Metallurgical and Materials Transactions A (rok: 2022, tom: 53, strony: 4101–4125), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11661-022-06821-z - link to the publication
  7. Using the Spark Plasma Sintering System for Fabrication of Advanced Semiconductor Materials
    Authors:
    Kamil Kaszyca, Marcin Chmielewski, Bartosz Bucholc , Piotr Błyskun, Fatima Nisar, Jerzy Rojek, and Rafał Zybała
    Academic press:
    Materials (rok: 2024, tom: 17, strony: 1422), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/ma17061422 - link to the publication
  8. Thermal conductivity analysis of porous NiAl materials manufactured by spark plasma sintering: Experimental studies and modelling
    Authors:
    S.Nosewicz, G.Jurczak, T.Wejrzanowski, S.Haj Ibrahim, A.Grabias, W.Węglewski, K.Kaszyca, J.Rojek, M.Chmielewski,
    Academic press:
    International Journal of Heat and Mass Transfer (rok: 2022, tom: 194, strony: 123070), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.ijheatmasstransfer.2022.123070 - link to the publication
  9. Using the Spark Plasma Sintering System for Fabrication of Advanced Semiconductor Materials
    Authors:
    Kamil Kaszyca, Marcin Chmielewski, Bartosz Bucholc , Piotr Błyskun, Fatima Nisar, Jerzy Rojek, and Rafał Zybała
    Academic press:
    Materials (rok: 2024, tom: 17, strony: 1422), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/ma17061422 - link to the publication
  10. Discrete element model for effective electrical conductivity of spark plasma sintered porous materials
    Authors:
    F. Nisar, J. Rojek, S. Nosewicz, J. Szczepański, K. Kaszyca, M. Chmielewski
    Academic press:
    Computational Particle Mechanics (rok: 2024, tom: 11, strony: 2191–2201), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s40571-024-00773-4 - link to the publication
  11. Discrete element thermal conductance model for sintered particles
    Authors:
    Jerzy Rojek, Radosław Kasztelan, Ramakrishnan Tharmaraj
    Academic press:
    Powder Technology (rok: 2022, tom: 405, strony: 117-521), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2022.117521 - link to the publication
  12. Combined EBSD and computer assisted quantitative analysis of the impact of spark plasma sintering parameters on the structure of porous materials
    Authors:
    S.Nosewicz, G.Jurczak, W.Chromiński, J.Rojek, K.Kaszyca, M.Chmielewski
    Academic press:
    Metallurgical and Materials Transactions A (rok: 2022, tom: 53, strony: 4101–4125), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11661-022-06821-z - link to the publication
  13. Evaluation of effective thermal conductivity of sintered porous materials using an improved discrete element model
    Authors:
    Fatima Nisar, Jerzy Rojek, Szymon Nosewicz, Kamil Kaszyca, Marcin Chmielewski
    Academic press:
    Powder Technology (rok: 2024, tom: 437, strony: 119546), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2024.119546 - link to the publication
  14. Discrete element thermal conductance model for sintered particles
    Authors:
    Jerzy Rojek, Radosław Kasztelan, Ramakrishnan Tharmaraj
    Academic press:
    Powder Technology (rok: 2022, tom: 405, strony: 117-521), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.powtec.2022.117521 - link to the publication
  15. Combined EBSD and computer assisted quantitative analysis of the impact of spark plasma sintering parameters on the structure of porous materials
    Authors:
    S.Nosewicz, G.Jurczak, W.Chromiński, J.Rojek, K.Kaszyca, M.Chmielewski
    Academic press:
    Metallurgical and Materials Transactions A (rok: 2022, tom: 53, strony: 4101–4125), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11661-022-06821-z - link to the publication