Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Machine learning, bio-modeling and medical image processing in prediction of metastases in lung cancer

2020/37/B/ST6/01959

Keywords:

machine learning mathematical modeling image processing metastases lung cancer,

Descriptors:

  • ST6_011:
  • ST6_012:
  • ST6_013:

Panel:

ST6 - Computer science and informatics: informatics and information systems, computer science, scientific computing, intelligent systems

Host institution :

Politechnika Śląska, Wydział Automatyki, Elektroniki i Informatyki

woj. śląskie

Other projects carried out by the institution 

Principal investigator (from the host institution):

prof. Andrzej Świerniak 

Number of co-investigators in the project: 11

Call: OPUS 19 - announced on 2020-03-16

Amount awarded: 1 032 600 PLN

Project start date (Y-m-d): 2021-02-01

Project end date (Y-m-d): 2024-08-31

Project duration:: 43 months (the same as in the proposal)

Project status: Project completed

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Information in the final report

  • Publication in academic press/journals (13)
  • Articles in post-conference publications (1)
  • Book publications / chapters in book publications (21)
  1. Radiomic signature accurately predicts the risk of metastatic dissemination in late-stage non-small cell lung cancer
    Authors:
    Agata Małgorzata Wilk, Emilia Kozłowska, Damian Borys, Andrea D'Amico, Krzysztof Fujarewicz, Izabela Gorczewska, Iwona Dębosz Suwińska, Rafał Suwiński, Jarosław Śmieja , Andrzej Swierniak
    Academic press:
    medRxiv (rok: 2023, tom: -, strony: 45678), Wydawca: CSH Laboratory
    Status:
    Published
    DOI:
    10.1101/2023.01.31.23285230 - link to the publication
  2. Common Variants in Osteopontin and CD44 Genes as Predictors of Treatment Outcome in Radiotherapy and Chemoradiotherapy for Non-Small Cell Lung Cancer
    Authors:
    Gałecki, S.; Gdowicz-Kłosok, A.; Deja, R.; Masłyk, B.; Giglok, M.; Suwi ´nski, R.; Butkiewicz, D
    Academic press:
    Cells (rok: 2023, tom: 12, strony: 2721), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/cells12232721 - link to the publication
  3. Application of Sensitivity Analysis to Discover Potential Molecular Drug Targets
    Authors:
    : Kardynska, M.; Smieja, J.; Paszek, P.; Puszynski, K
    Academic press:
    International Journal of Molecular Sciences (rok: 2022, tom: 23, strony: 6604), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/ijms23126604 - link to the publication
  4. Radiomic signature accurately predicts the risk of metastatic dissemination in late-stage non-small cell lung cancer
    Authors:
    Agata Małgorzata Wilk, Emilia Kozłowska, Damian Borys, Andrea D'Amico, Krzysztof Fujarewicz, Izabela Gorczewska, Iwona Dębosz Suwińska, Rafał Suwiński, Jarosław Śmieja , Andrzej Swierniak
    Academic press:
    medRxiv (rok: 2023, tom: -, strony: 45678), Wydawca: CSH Laboratory
    Status:
    Published
    DOI:
    10.1101/2023.01.31.23285230 - link to the publication
  5. Impact of renin-angiotensin system inhibitors on the survival of patients with rectal cancer
    Authors:
    Marcin Zeman, Władysław Skałba , Agata Małgorzata Wilk, Alexander Jorge Cortez, Adam Maciejewski and Agnieszka Czarniecka
    Academic press:
    BMC Cancer (rok: 2022, tom: 22, strony: 815 (2022)), Wydawca: BMC part of Springer Nature
    Status:
    Published
    DOI:
    10.1186/s12885-022-09919-0 - link to the publication
  6. Non-parametric MRI Brain Atlas for the Polish Population.
    Authors:
    Borys D, Kijonka M, Psiuk-Maksymowicz K, Gorczewski K, Zarudzki L, Sokol M and Swierniak A
    Academic press:
    Frontiers in Neuroinformatics (rok: 2021, tom: v.15, strony: Article 684759), Wydawca: Frontiers Media SA
    Status:
    Published
    DOI:
    10.3389/fninf.2021.684759 - link to the publication
  7. Mathematical modeling of regulatory networks of intracellular processes – aims and selected methods
    Authors:
    Malgorzata Kardynska, Daria Kogut, Marcin Pacholczyk, Jaroslaw Smieja
    Academic press:
    Computational and Structural Biotechnology Journal (rok: 2023, tom: 21, strony: 1523-1532), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.csbj.2023.02.006 - link to the publication
  8. Radiomic signature accurately predicts the risk of metastatic dissemination in late-stage non-small cell lung cancer
    Authors:
    Agata Małgorzata Wilk, Emilia Kozłowska, Damian Borys, Andrea D'Amico, Krzysztof Fujarewicz, Izabela Gorczewska, Iwona Dębosz Suwińska, Rafał Suwiński, Jarosław Śmieja , Andrzej Swierniak
    Academic press:
    Translational Lung Cancer Research (rok: 2023, tom: 45998, strony: 1372-1383), Wydawca: AME Publishing Company
    Status:
    Published
    DOI:
    10.21037/tlcr-23-60 - link to the publication
  9. Mathematical modeling of regulatory networks of intracellular processes – aims and selected methods
    Authors:
    Malgorzata Kardynska, Daria Kogut, Marcin Pacholczyk, Jaroslaw Smieja
    Academic press:
    Computational and Structural Biotechnology Journal (rok: 2023, tom: 21, strony: 1523-1532), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.csbj.2023.02.006 - link to the publication
  10. Mathematical Model of Intrisic Drug Resistance in Lung Cancer
    Authors:
    Kozlowska E, Swierniak A
    Academic press:
    International Journal of Molecular Sciences (rok: 2023, tom: 24, strony: 15801), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/ijms242115801 - link to the publication
  11. Radiomic signature accurately predicts the risk of metastatic dissemination in late-stage non-small cell lung cancer
    Authors:
    Agata Małgorzata Wilk, Emilia Kozłowska, Damian Borys, Andrea D'Amico, Krzysztof Fujarewicz, Izabela Gorczewska, Iwona Dębosz Suwińska, Rafał Suwiński, Jarosław Śmieja , Andrzej Swierniak
    Academic press:
    Translational Lung Cancer Research (rok: 2023, tom: 45998, strony: 1372-1383), Wydawca: AME Publishing Company
    Status:
    Published
    DOI:
    10.21037/tlcr-23-60 - link to the publication
  12. Mathematical Modeling Support for Lung Cancer Therapy—A Short Review
    Authors:
    Śmieja J
    Academic press:
    International Journal of Molecular Sciences (rok: 2023, tom: 24, strony: 14516), Wydawca: MDPI
    Status:
    Published
    DOI:
    10.3390/ijms241914516 - link to the publication
  13. Impact of government policies on the COVID-19 pandemic unraveled by mathematical modelling
    Authors:
    Agata Wilk, Krzysztof Łakomiec, Krzysztof Psiuk-Maksymowicz, Krzysztof Fujarewicz
    Academic press:
    Scientific Reports (rok: 2022, tom: 12, strony: 45670), Wydawca: Nature
    Status:
    Published
    DOI:
    10.1038/s41598-022-21126-2 - link to the publication
  1. System modeling and machine learning in prediction of metastases in lung cancer
    Authors:
    Andrzej Swierniak, Emilia Kozłowska, Krzysztof Fujarewicz, Damian Borys, Agata Wilk, Jarosław Śmieja, Rafał Suwinski
    Conference:
    Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2023)Vol. 3 Bioinformatics (rok: 2023, tom: 16th International Joint Conference on Biomedical Engineering Systems and Technologies, strony: 220-227), Wydawca: SCITEPRESS
    Data:
    konferencja 16-18. 02.2023
    Status:
    Published
    DOI:
    10.5220/0011705300003414 - link to the publication
  1. Predicting the Risk of Metastatic Dissemination in Non-small Cell Lung Cancer Using Clinical and Gentic Data
    Authors:
    Kozłowska E, Wilk AM, Butkiewicz D, Krześniak M, Gdowicz-Kłosok A, Giglok M, Suwinski R, Świerniak A
    Book:
    The Latest Developments and Challenges in Biomedical Engineering (rok: 2024, tom: LNNS 746, strony: 187-197), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_15 - link to the publication
  2. A Framework for Modeling and Efficacy Evaluation of Treatment of Cancer with Metastasis
    Authors:
    Jarosław Śmieja, Krzysztof Psiuk-Maksymowicz, Andrzej Świerniak
    Book:
    Biocybernetics and Biomedical Engineering – Current Trends and Challenges (rok: 2022, tom: LNNS 293, strony: 88-97), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-030-83704-4_9 - link to the publication
  3. The Stochastic Mathematical Model Predicts Angio-Therapy Could Delay the Emergence of Metastases in Lung Cancer
    Authors:
    Emilia Kozłowska, Andrzej Świerniak
    Book:
    Biocybernetics and Biomedical Engineering – Current Trends and Challenges (rok: 2022, tom: LNNS 293, strony: 64-73), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-030-83704-4_7 - link to the publication
  4. Potential of radiomics features for predicting time to metastasis in NSCLC
    Authors:
    A. Wilk, K. Fujarewicz, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Intelligent Information and Database Systems.ACIIDS 2022 (rok: 2022, tom: LNAI13758, strony: 64-76), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-21967-2_6 - link to the publication
  5. A Framework for Modeling and Efficacy Evaluation of Treatment of Cancer with Metastasis
    Authors:
    Jarosław Śmieja, Krzysztof Psiuk-Maksyowicz, Andrzej Świerniak
    Book:
    Biocybernetics and Biomedical Engineering – Current Trends and Challenges (rok: 2022, tom: LNNS 293, strony: 88-97), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-030-83704-4_9 - link to the publication
  6. Metastasis Modelling Approaches-Comparison of Ideas
    Authors:
    Wyciślok A, Śmieja J
    Book:
    The Latest Developments and Challenges in Biomedical Engineering (rok: 2024, tom: LNNS 746, strony: 199-214), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_16 - link to the publication
  7. Model of Lung Cancer Progression and Metastasis - Need for a Delay
    Authors:
    Psiuk-Maksymowicz K
    Book:
    The Latest Developments and Challenges in Biomedical Engineering (rok: 2024, tom: LNNS 746, strony: 215-223), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_17 - link to the publication
  8. Machine learning approach to predict metastasis in lung cancer based on radiomic features
    Authors:
    K. Fujarewicz, A. Wilk, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Intelligent Information and Database Systems.ACIIDS 2022 (rok: 2022, tom: LNAI13758, strony: 40-50), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-21967-2_4 - link to the publication
  9. Prediction of lung cancer survival based on multiomic data
    Authors:
    Roman Jaksik, Jarosław Śmieja
    Book:
    Intelligent Information and Database Systems.ACIIDS 2022 (rok: 2022, tom: LNAI13758, strony: 116-127), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-21967-2_10 - link to the publication
  10. A minimal model of cancer growth, metastasis and treatment
    Authors:
    Jarosław Śmieja, Andrzej Świerniak, Marek Kimmel
    Book:
    Recent Challenges in Intelligent Information and Database Systems, ACIIDS 2022 (rok: 2022, tom: CCIS 1716, strony: 566-577), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-981-19-8234-7_44 - link to the publication
  11. Assessing the Prognosis of Patients with Metastatic or Recurrent Non-small Cell Lung Cancer in the Era of Immunotherapy and Targeted Therapy
    Authors:
    Gałecki S, Kysiak M, Kozłowska E, Wilk AM, Suwinski R, Świerniak A
    Book:
    the Latest Development and Challenges in Biomedical Engineering (rok: 2024, tom: LNNS 746, strony: 175-185), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_14 - link to the publication
  12. Improving the Predictive Ability of Radiomics-Based Regression Survival Models Through Incorporating Multiple Regions of Interest
    Authors:
    Wilk AM, Kozłowska E, Borys D, D'Amico A, Gorczewska I, Dębosz-Suwińska I, Gałecki S, Fujarewicz K, Suwiński R, Świerniak A
    Book:
    The Latest Developments and Challenges in Biomedical Engineering. (rok: 2024, tom: LNNS 746, strony: 163-173), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_13 - link to the publication
  13. Improving the Predictive Ability of Radiomics-Based Regression Survival Models Through Incorporating Multiple Regions of Interest
    Authors:
    Wilk AM, Kozłowska E, Borys D, D'Amico A, Gorczewska I, Dębosz-Suwińska I, Gałecki S, Fujarewicz K, Suwiński R, Świerniak A
    Book:
    The Latest Developments and Challenges in Biomedical Engineering. (rok: 2024, tom: LNNS 746, strony: 163-173), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-38430-1_13 - link to the publication
  14. Potential of radiomics features for predicting time to metastasis in NSCLC
    Authors:
    A. Wilk, K. Fujarewicz, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Intelligent Information and Database Systems.ACIIDS 2022 (rok: 2022, tom: LNAI13758, strony: 64-76), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-21967-2_6 - link to the publication
  15. Machine learning approach to predict metastasis in lung cancer based on radiomic features
    Authors:
    K. Fujarewicz, A. Wilk, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Intelligent Information and Database Systems.ACIIDS 2022 (rok: 2022, tom: LNAI13758, strony: 40-50), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-3-031-21967-2_4 - link to the publication
  16. Predicting metastasis-free survival using clinical data in non-small cell lung cancer
    Authors:
    E. Kozłowska, M. Giglok, I. Dębosz-Suwińska, R. Suwiński, A. Świerniak
    Book:
    Recent Challenges in Intelligent Information and Database Systems, ACIIDS 2022 (rok: 2022, tom: CCIS1716, strony: 227-237), Wydawca: Springer Nature
    Status:
    Published
    DOI:
    10.1007/978-981-19-8234-7_18 - link to the publication
  17. Potential of radiomics features for predicting time to metastasis in NSCLC
    Authors:
    A. Wilk, K. Fujarewicz, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Status:
    Accepted for publication
  18. A minimal model of cancer growth, metastasis and treatment
    Authors:
    Jarosław Śmieja, Andrzej Świerniak, Marek Kimmel
    Book:
    Status:
    Accepted for publication
  19. Machine learning approach to predict metastasis in lung cancer based on radiomic features
    Authors:
    K. Fujarewicz, A. Wilk, D. Borys, A. d'Amico, R. Suwiński, A. Swierniak
    Book:
    Status:
    Accepted for publication
  20. Prediction of lung cancer survival based on multiomic data
    Authors:
    Roman Jaksik, Jarosław Śmieja
    Book:
    Status:
    Accepted for publication
  21. Predicting metastasis-free survival using clinical data in non-small cell lung cancer
    Authors:
    E. Kozłowska, M. Giglok, I. Dębosz-Suwińska, R. Suwiński, A. Świerniak
    Book:
    Status:
    Accepted for publication