Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Algorithmic challenges of mass spectrometry.

2018/29/B/ST6/00681

Keywords:

mass spectrometry Wasserstein distance bayesian statistics graph algorithms

Descriptors:

  • ST6_13: Bioinformatics, biocomputing, DNA and molecular computation
  • ST1_18: Control theory and optimisation
  • ST6_11: Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)

Panel:

ST6 - Computer science and informatics: informatics and information systems, computer science, scientific computing, intelligent systems

Host institution :

Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki

woj. mazowieckie

Other projects carried out by the institution 

Principal investigator (from the host institution):

prof. Anna Gambin 

Number of co-investigators in the project: 5

Call: OPUS 15 - announced on 2018-03-15

Amount awarded: 711 600 PLN

Project start date (Y-m-d): 2019-01-14

Project end date (Y-m-d): 2022-04-13

Project duration:: 39 months (the same as in the proposal)

Project status: Project settled

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Equipment purchased [PL]

  1. karty graficzne (50 930 PLN)
  2. laptop (3 szt.) (31 780 PLN)
  3. Projektor (5 000 PLN)

Information in the final report

  • Publication in academic press/journals (5)
  1. Masserstein: Linear regression of mass spectra by optimal transport
    Authors:
    Michał Aleksander Ciach, Błażej Miasojedow, Grzegorz Skoraczyński, Szymon Majewski, Michał Startek, Dirk Valkenborg, Anna Gambin
    Academic press:
    Rapid Communications in Mass Spectrometry (rok: 2020, tom: e8956, strony: e8956), Wydawca: Wiley Analytical Science
    Status:
    Published
    DOI:
    10.1002/rcm.8956 - link to the publication
  2. MIND: A Double-Linear Model To Accurately Determine Monoisotopic Precursor Mass in High-Resolution Top-Down Proteomics
    Authors:
    Lermyte F, Dittwald P, Claesen J, Baggerman G, Sobott F, O'Connor PB, Laukens K, Hooyberghs J, Gambin A, Valkenborg D
    Academic press:
    Analytical Chemistry (rok: 2019, tom: 91, strony: 10310-10319), Wydawca: American Chemical Society
    Status:
    Published
    DOI:
    10.1021/acs.analchem.9b02682 - link to the publication
  3. Alignstein: Optimal transport for improved LC-MS retention time alignment
    Authors:
    Grzegorz Skoraczynski , Anna Gambin, Błażej Miasojedow
    Academic press:
    Giga Science (rok: 2022, tom: 11, strony: 45300), Wydawca: Oxford University Press
    Status:
    Published
    DOI:
    10.1093/gigascience/giac101 - link to the publication
  4. Envemind: Accurate Monoisotopic Mass Determination Based On Isotopic Envelope
    Authors:
    Piotr Radziński, Michał Startek, Dirk Valkenborg, Anna Gambin
    Academic press:
    Journal of the American Society for Mass Spectrometry (rok: 2022, tom: 33 (11), strony: 2063-2069), Wydawca: American Society for Mass Spectrometry
    Status:
    Published
    DOI:
    10.1021/jasms.2c00176 - link to the publication
  5. Knot_pull—python package for biopolymer smoothing and knot detection
    Authors:
    Aleksandra I. Jarmolińska, Anna Gambin, Joanna I. Sułkowska
    Academic press:
    Bioinformatics (rok: 2020, tom: 36(3), strony: 953–955), Wydawca: Oxford University Press
    Status:
    Published
    DOI:
    10.1093/bioinformatics/btz644 - link to the publication