Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Efficient unsupervised learning with applications in deep learning

2017/25/B/ST6/01271

Keywords:

unsupervised learning probabilistic methods deep learning

Descriptors:

  • ST6_11: Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)

Panel:

ST6 - Computer science and informatics: informatics and information systems, computer science, scientific computing, intelligent systems

Host institution :

Uniwersytet Jagielloński, Wydział Matematyki i Informatyki

woj. małopolskie

Other projects carried out by the institution 

Principal investigator (from the host institution):

prof. Jacek Tabor 

Number of co-investigators in the project: 8

Call: OPUS 13 - announced on 2017-03-15

Amount awarded: 573 200 PLN

Project start date (Y-m-d): 2018-02-09

Project end date (Y-m-d): 2021-02-08

Project duration:: 36 months (the same as in the proposal)

Project status: Project settled

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Equipment purchased [PL]

  1. serwer obliczeniowy.
  2. stacja robocza (23 975 PLN)
  3. Klaster komputerowy (100 000 PLN)
  4. tablet (5 977 PLN)

Information in the final report

  • Publication in academic press/journals (7)
  • Articles in post-conference publications (12)
  1. A classification-based approach to semi-supervised clustering with pairwise constraints
    Authors:
    Marek Śmieja, Łukasz Struski, Mario A. T. Figueiredo
    Academic press:
    Neural Networks (rok: 2020, tom: 127, strony: 193-203), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.neunet.2020.04.017 - link to the publication
  2. Online updating of active function cross-entropy clustering
    Authors:
    Przemysław Spurek, Jacek Tabor, Krzysztof Byrski
    Academic press:
    Pattern Analysis and Applications (rok: 2019, tom: 22, strony: 1409-1425), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s10044-018-0701-8 - link to the publication
  3. Fast independent component analysis algorithm with a simple closed-form solution.
    Authors:
    Przemysław Spurek, Jacek Tabor, Łukasz Struski, Marek Śmieja
    Academic press:
    Knowledge-Based Systems 161 (2018): 26-34. (rok: 2018, tom: 161, strony: 26-34), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.knosys.2018.07.027 - link to the publication
  4. SeGMA: Semi-Supervised Gaussian Mixture Autoencoder
    Authors:
    Marek Śmieja, Maciej Wołczyk, Jacek Tabor, Bernhard C. Geiger
    Academic press:
    IEEE Transactions on Neural Networks and Learning Systems (rok: 2020, tom: -, strony: 45303), Wydawca: IEEE
    Status:
    Published
    DOI:
    10.1109/TNNLS.2020.3016221 - link to the publication
  5. Efficient mixture model for clustering of sparse high dimensional binary data
    Authors:
    Marek Śmieja, Krzysztof Hajto, Jacek Tabor
    Academic press:
    Data Mining and Knowledge Discovery (rok: 2019, tom: 33, strony: 1583--1624), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s10618-019-00635-1 - link to the publication
  6. OneFlow: One-class flow for anomaly detection based on a minimal volume region
    Authors:
    Łukasz Maziarka; Marek Śmieja; Marcin Sendera; Łukasz Struski; Jacek Tabor; Przemysław Spurek
    Academic press:
    IEEE Transactions on Pattern Analysis and Machine Intelligence (rok: 2021, ), Wydawca: IEEE Transactions on Pattern Analysis and Machine Intelligence
    Status:
    Accepted for publication
    DOI:
    10.1109/TPAMI.2021.3108223 - link to the publication
  7. Projected memory clustering
    Authors:
    Łukasz Struski, Przemysław Spurek, Jacek Tabor, Marek Śmieja
    Academic press:
    Pattern Recognition Letters (rok: 2019, tom: 123, strony: 45550), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.patrec.2019.02.023 - link to the publication
  1. Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models
    Authors:
    Paweł Morawiecki, Przemysław Spurek, Marek Śmieja, Jacek Tabor
    Conference:
    European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2020) (rok: 2020, ), Wydawca: Louvain-la-Neuve : i6doc
    Data:
    konferencja 44106
    Status:
    Published
  2. Set Aggregation Network as a Trainable Pooling Layer
    Authors:
    Łukasz Maziarka, Marek Śmieja, Aleksandra Nowak, Jacek Tabor, Łukasz Struski, Przemysław Spurek
    Conference:
    ICONIP (rok: 2019, ), Wydawca: Springer International Publishing
    Data:
    konferencja 2019
    Status:
    Published
  3. Biologically-Inspired Spatial Neural Networks
    Authors:
    Maciej Wołczyk, Jacek Tabor, Marek Śmieja, Szymon Maszke
    Conference:
    NeurIPS workshop on Real Neurons & Hidden Units (NeuroAI 2019) (rok: 2019, ), Wydawca: NeurIPS 2019
    Data:
    konferencja 2019
    Status:
    Published
  4. Estimating conditional density of missing values using deep gaussian mixture model
    Authors:
    Marcin Przewięźlikowski, Marek Śmieja, Łukasz Struski
    Conference:
    Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science (rok: 2020, ), Wydawca: Springer, Cham
    Data:
    konferencja 44122
    Status:
    Published
  5. Flow-based SVDD for anomaly detection
    Authors:
    Marcin Sendera, Marek Śmieja, Łukasz Maziarka, Łukasz Struski, Przemysław Spurek, Jacek Tabor
    Conference:
    Invertible Neural Networks, NormalizingFlows, and Explicit Likelihood Models(ICML 2020) (rok: 2020, ), Wydawca: ICML
    Data:
    konferencja 44030
    Status:
    Published
  6. Iterative imputation of missing data using auto-encoder dynamics
    Authors:
    Marek Śmieja, Maciej Kołomycki, Łukasz Struski, Mateusz Juda, Mario A. T. Figueiredo
    Conference:
    Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science (rok: 2020, ), Wydawca: Springer, Cham
    Data:
    konferencja 44122
    Status:
    Published
  7. Processing of incomplete images by (graph) convolutional neural networks
    Authors:
    Tomasz Danel, Marek Śmieja, Łukasz Struski, Przemysław Spurek, Łukasz Maziarka
    Conference:
    Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science (rok: 2020, ), Wydawca: Springer, Cham
    Data:
    konferencja 44122
    Status:
    Published
  8. Spatial graph convolutional networks
    Authors:
    Tomasz Danel, Przemysław Spurek, Jacek Tabor, Marek Śmieja, Łukasz Struski, Agnieszka Słowik, Łukasz Maziarka
    Conference:
    Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science (rok: 2020, ), Wydawca: Springer, Cham.
    Data:
    konferencja 44122
    Status:
    Published
  9. Finding the Optimal Network Depth in Classification Tasks
    Authors:
    Bartosz Wójcik, Maciej Wołczyk, Klaudia Bałazy, Jacek Tabor
    Conference:
    Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020 (rok: 2020, ), Wydawca: Springer, Cham
    Data:
    konferencja 44088
    Status:
    Published
  10. Non-linear ICA based on Cramer-Wold metric
    Authors:
    Przemysław Spurek, Aleksandra Nowak, Jacek Tabor, Łukasz Maziarka, Stanisław Jastrzębski
    Conference:
    Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science (rok: 2020, ), Wydawca: Springer, Cham
    Data:
    konferencja 44122
    Status:
    Published
  11. Can autoencoders help with filling missing data?
    Authors:
    Marek Śmieja, Maciej Kołomycki, Łukasz Struski, Mateusz Juda, Mário A. T. Figueiredo
    Conference:
    ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations (rok: 2020, ), Wydawca: ICLR
    Data:
    konferencja 43947
    Status:
    Published
  12. Molecule-Augmented Attention Transformer
    Authors:
    Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, Stanisław Jastrzębski
    Conference:
    Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada (rok: 2019, ), Wydawca: NeurIPS 2019
    Data:
    konferencja 2019
    Status:
    Published