Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Impact of expected climate change on water temperatures of selected Polish rivers

2016/21/B/ST10/02516

Keywords:

stream temperature climatic change biodiversity empirical models artificial neural networks Mohseni model air2stream optimization methods

Descriptors:

  • ST10_10: Hydrogeology, hydrology, water cycle, water pollution
  • ST10_2: Climatology, meteorology, climate change
  • ST6_7: Artificial intelligence, intelligent systems, multi-agent systems

Panel:

ST10 - Earth sciences: Earth system science, atmospheric sciences, climatology, geochemistry, geodesy, geoecology, geophysics, physical geography, geoinformatics, planetary geology, pedology, mining, chemical and physical oceanology, environmental protection

Host institution :

Instytut Geofizyki Polskiej Akademii Nauk

woj. mazowieckie

Other projects carried out by the institution 

Principal investigator (from the host institution):

dr hab. Adam Piotrowski 

Number of co-investigators in the project: 3

Call: OPUS 11 - announced on 2016-03-15

Amount awarded: 309 420 PLN

Project start date (Y-m-d): 2017-02-16

Project end date (Y-m-d): 2020-02-15

Project duration:: 36 months (the same as in the proposal)

Project status: Project settled

Project description

Download the project description in a pdf file

Note - project descriptions were prepared by the authors of the applications themselves and placed in the system in an unchanged form.

Equipment purchased [PL]

  1. Komputer stacjonarny z kartą graficzną (10 701 PLN)
  2. klaster obliczeniowy (32 000 PLN)
  3. Licencje MATLAB (3 szt.) (9 000 PLN)
  4. laptop (6 000 PLN)
  5. licencje MATLAB STATISTICS TOOLBOX (3 szt.) (4 500 PLN)

Information in the final report

  • Publication in academic press/journals (8)
  1. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method
    Authors:
    Piotrowski AP, Napiorkowski JJ
    Academic press:
    Journal of Hydrology (rok: 2018, tom: 561, strony: 395-412), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.jhydrol.2018.04.016 - link to the publication
  2. Influence of the choice of stream temperature model on the projections of water temperature in rivers
    Authors:
    Piotrowski AP, Osuch M, Napiorkowski JJ
    Academic press:
    Journal of Hydrology (rok: 2021, tom: 601, strony: 126629), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.jhydrol.2021.126629 - link to the publication
  3. Input dropout in product unit neural networks for stream water temperature modelling
    Authors:
    Piotrowski AP, Napiorkowski JJ, Piotrowska AE
    Academic press:
    Journal of Hydrology (rok: 2021, tom: 598, strony: 126253), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.jhydrol.2021.126253 - link to the publication
  4. River/stream water temperature forecasting using artificial intelligence models: a systematic review
    Authors:
    Zhu S, Piotrowski AP
    Academic press:
    Acta Geophysica (rok: 2020, tom: 68, strony: 1433–1442), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11600-020-00480-7 - link to the publication
  5. Joint Optimization of Conceptual Rainfall-Runoff Model Parameters and Weights Attributed to Meteorological Stations
    Authors:
    Piotrowski AP, Osuch M, Napiorkowski JJ
    Academic press:
    Water Resources Management (rok: 2019, tom: 33, strony: 4509-4524), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11269-019-02368-8 - link to the publication
  6. Simple modifications of the nonlinear regression stream temperature model for daily data
    Authors:
    Piotrowski AP, Napiorkowski JJ
    Academic press:
    Journal of Hydrology (rok: 2019, tom: 572, strony: 308-328), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.jhydrol.2019.02.035 - link to the publication
  7. Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
    Authors:
    Piotrowski AP, Napiorkowski JJ, Piotrowska AP
    Academic press:
    Earth-Science Reviews (rok: 2020, tom: 201, strony: 103076), Wydawca: Elsevier
    Status:
    Published
    DOI:
    10.1016/j.earscirev.2019.103076 - link to the publication
  8. Relationship Between Calibration Time and Final Performance of Conceptual Rainfall-Runoff Models
    Authors:
    Piotrowski AP, Napiorkowski JJ, Osuch M
    Academic press:
    Water Resources Management (rok: 2019, tom: 33, strony: 19-37), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s11269-018- - link to the publication