Projects funded by the NCN


Information on the principal investigator and host institution

Information of the project and the call

Keywords

Equipment

Delete all

Consistent and scalable learning algorithms for structured output prediction

2013/09/D/ST6/03917

Keywords:

machine learning structured ouput prediction statistical consistency risk minimization large-scale learning algorithms

Descriptors:

  • ST6_11: Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
  • ST6_7: Artificial intelligence, intelligent systems, multi-agent systems

Panel:

ST6 - Computer science and informatics: informatics and information systems, computer science, scientific computing, intelligent systems

Host institution :

Politechnika Poznańska, Wydział Informatyki

woj. wielkopolskie

Other projects carried out by the institution 

Principal investigator (from the host institution):

dr Krzysztof Dembczyński 

Number of co-investigators in the project: 2

Call: SONATA 5 - announced on 2013-03-15

Amount awarded: 393 900 PLN

Project start date (Y-m-d): 2014-03-24

Project end date (Y-m-d): 2017-03-23

Project duration:: 36 months (the same as in the proposal)

Project status: Project settled

Information in the final report

  • Publication in academic press/journals (4)
  • Articles in post-conference publications (3)
  • Book publications / chapters in book publications (1)
  1. Surrogate regret bounds for generalized classification performance metrics
    Authors:
    Wojciech Kotlowski, Krzysztof Dembczynski
    Academic press:
    Machine Learning (rok: 2017, tom: 106, strony: 549-572), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s10994-016-5591-7 - link to the publication
  2. Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models
    Authors:
    Michiel Stock, Krzysztof Dembczyński, Bernard De Baets, Willem Waegeman
    Academic press:
    Data Mining and Knowledge Discovery (rok: 2016, ), Wydawca: Springer
    Status:
    Accepted for publication
    DOI:
    10.1007/s10618-016-0456-z - link to the publication
  3. Extreme classification under limited space and time budget
    Authors:
    Kalina Jasinska, Krzysztof Dembczyński
    Academic press:
    Schedae Informaticae (rok: 2016, tom: 25, strony: 45558), Wydawca: Uniwersytet Jagielloński
    Status:
    Published
    DOI:
    10.4467/20838476SI.16.001.6182 - link to the publication
  4. Multi-target prediction: a unifying view on problems and methods
    Authors:
    Willem Waegeman, Krzysztof Dembczyński, Eyke Hüllermeier
    Academic press:
    Data Mining and Knowledge Discovery (rok: 2019, tom: 33, strony: 293–324), Wydawca: Springer
    Status:
    Published
    DOI:
    10.1007/s10618-018-0595-5 - link to the publication
  1. Online F-Measure Optimization
    Authors:
    Róbert Busa-Fekete, Balázs Szörényi, Krzysztof Dembczyński, Eyke Hüllermeier
    Conference:
    Advances in Neural Information Processing Systems 28 (NIPS 2015) (rok: 2015, ), Wydawca: Curran Associates, Inc.
    Data:
    konferencja 7-12/12/2015
    Status:
    Published
  2. Surrogate regret bounds for generalized classification performance metrics
    Authors:
    Wojciech Kotłowski, Krzysztof Dembczyński
    Conference:
    Asian Conference on Machine Learning (rok: 2015, ), Wydawca: JMLR: Workshop and Conference Proceedings
    Data:
    konferencja 20-22/11/2015
    Status:
    Published
  3. Extreme F-measure Maximization using Sparse Probability Estimates
    Authors:
    Kalina Jasinska, Krzysztof Dembczynski, Róbert Busa-Fekete, Karlson Pfannschmidt, Timo Klerx, Eyke Hüllermeier
    Conference:
    International Conference on Machine Learning (rok: 2016, ), Wydawca: Proceedings of Machine Learning Research
    Data:
    konferencja 20-22 czerwiec 2016
    Status:
    Published
  1. Consistency of Probabilistic Classifier Trees
    Authors:
    Krzysztof Dembczynski, Wojciech Kotlowski, Willem Waegeman, Róbert Busa-Fekete, Eyke Hüllermeier
    Book:
    ECML PKDD 2016: Machine Learning and Knowledge Discovery in Databases (rok: 2016, tom: 9852, strony: 511-526), Wydawca: Springer
    Status:
    Published