Huber MOQI

Reg. No: 2024/54/E/ST2/00451; Principal Investigator: dr Felix Huber

Sonata Bis 14

MOQI: Mathematical Optimization in Quantum Information

Name PI: Felix Huber

Host Institution: U. Gdańsk

Proposal duration: 60 months.

Summary:

Quantum computation aims to perform calculations with quantum systems, for example atoms or

photons. But understanding what happens inside quantum computers presents huge mathematical

challenges. Many of these are in the area of mathematical optimization, maximizing or minimiz-

ing some quantity of interest. These methods have now become workhorses for studying quantum

behaviour. However, researchers face two larger challenges:

a) There are problems for which using numerical methods simply requires too much computer

memory and computation time. An example is the study of quantum many-body system, where with

each additional quantum mechanical spin described, the size of the optimization problem doubles. As

a consequence, current work focuses on efficient approximations, which often - despite being efficient in

a theoretical sense - still scale too badly to be used in practise. Yet for the understanding of quantum

magnetism one wants to study systems of hundreds if not thousand spins, far beyond current computing

capabilities. Another example, important for quantum cryptography, are certain regular geometrical

alignments of lines. One wants to know whether a certain alignment with fixed angles between them is

possible or not. Despite being well-known problems with ready formulations in terms of mathematical

optimization, their size keeps them out of reach of being numerically solved.

b) Some long-standing open problems in quantum information theory are clearly about maximizing

or minimizing a certain quantity. However, no closed-form formulation of these problems in terms of

mathematical optimization is known. Examples are the quantum analog of a famous Shannon capacity

of graphs (important for the reliable transmission of data), and the characterization of quantum

correlations in network structures. Both problems are intensely studied in the field of quantum graphs

and networks. Yet, researchers face certain mathematical obstructions to apply optimization methods

in order to solve them.

The aim of this project is to address these two challenges, so that both very large problems can be

solved computationally, and so that advanced methods from mathematical optimization can be used

to attack a wider class of problems. Overall, the project provides recipes for the larger community,

making mathematical optimization methods more powerful and more widespread applicable.

1/1