
Partial Differential Equation (PDE) constrained optimization is at the core of wave-based imaging problems that 

appear in several fields from medical sciences to earth and environmental sciences. In this methods, some receivers 

are located at the boundaries of the object which is to be imaged (for example at the surface of the Earth in the 

seismic imaging methods) and record the wavefield that has been produced using suitable sources at appropriate 

locations. Imaging is the process of determining the physical properties of the medium, that appear as the 

coefficients of the governing PDE, from the recorded data. The conventional approaches to solve such problems 

are based on optimization. This means, one introduces some function (e.g., L2 norm) that measures the mismatch 

between modeled and observed data and then try to find their minimizers. The found minimizers are then set to be 

the solution to the imaging problem. However, such mismatch functions are nonconvex and thus have multiple 

local minima, thus conventional gradient-based optimization methods face limitations to solve the problem. That 

means, in order to find a solution that is close to the “true” solution, one needs to have a “sufficiently good” 

estimate to be used as the initial guess. In this case, we say that the optimization method is not robust with respect 

to the initial model. 

 

One of the approaches for solving the problem of local minima and finding globally optimal solutions is using 

global optimization methods. This approaches, however, are restricted to small size problems and face limitations 

for solving real-world imaging problems. An interesting and practical approach to solve nonconvex imaging 

problems is to extend the search space. The basic idea is to relax a nonconvex problem into a sequence of convex 

subproblems whose solution converge towards the global solution of the original (nonconvex) problem. The 

generated convex subproblems are then solved efficiently by using well documented numerical methods available 

for efficient solution of convex optimization problems, such as least squares and linear programming problems. 

 

In the last decade, different methods under various names have been developed to increase the degree of the 

convexity of wave-based imaging problem. In a group of these methods, extended methods, the data residuals are 

mapped into a set of parameters that are artificially added to the optimization problem. In this case, data fitting is 

no longer a problem because they can be matched even with erroneous velocity models. These artificial parameters 

are then penalized by updating the image such that at the convergence point we arrive at the original problem. The 

two main categories robust of these methods apply extension in the image domain or in the data domain, each 

having its own advantages and disadvantages. Despite very promising results obtained by these methods, many 

open questions and clarifications still remain. 

 

This project aims to answer to those questions as much as possible and develop efficient methods to solve the 

inverse problem in wave-based imaging without requesting a good initial model. Specifically, 1) we will combine 

the properties of the methods based on extension in model domain and data domain to develop an efficient and 

robust algorithm having the advantages of both; 2) we will develop an efficient and robust method for waveform 

inversion based on multipliers method designed for the real media with elastic properties; 3) we want to determine 

the theoretical connection between the extended formulations and the standard Newton’s method.  

 

Achievements of this project will be significantly useful to wave-based imaging community in general and seismic 

imaging in particular. Besides better understanding of the mechanism of the extended methods in increasing the 

robustness of the inverse problem the methodological developments in this project will allow geoscientists to have 

an efficient tool for various studies of the Earth’s structure and better image the challenging subsurface models in 

both exploration and crustal scales that are otherwise impossible. 
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