
Abstract for the general public
The standard notion of “efficient” or “tractable” computation is programs whose running time is bounded by some

polynomial, such as 3n2 + 7n+ 5, where n is the size of the input. The objective of this proposal is to build a theory of

polynomial computation by finite-state devices, such as finite automata. We will study functions that input and output

objects such as lists or trees, do so in a “finite-state” way, and play – in the finite-state context – the same role as the class

PTIME plays for Turing machines. Apart from reasons of a mathematical nature, the purpose of studying finite-state

devices, as opposed to general Turing machines, is to have models for which the halting problem is decidable.

What is a finite-state function? Although we do not know the answer in general, and this proposal is intended to

find it, we do know the answer when the inputs are strings, and the outputs are the Boolean values “yes” or “no”. In this

case, the finite-state functions are the regular languages; their theory is firmly established and we do not plan to extend

it. Regular languages can be described in many different ways: finite automata (dozens of equivalent models), regular

expressions, finite semigroups, or logics (most prominently, monadic second-order logic mso). Each of these descrip-

tions is useful in different contexts, and the striking fact that they all describe the same class of languages makes for a very

appealing theory. This appeal is one of the reasons why the notion of “regular language” has been studied intensively in

theoretical computer science, with many results motivated by logic and also the study of other input structures such as

trees or graphs. The connections between automata and logic have had a profound impact on (not only theoretical) com-

puter science, including four Turing Awards: in 1976 Rabin and Scott were awarded for introducing nondeterministic

machines (finite automata, in their case), in 1996 Pnueli was awarded for introducing temporal logic as a language for pro-

gram specification (later on, followingVardi andWolper, automata became the principalmeans to reason about temporal

logics), in 2007 Clarke, Emerson and Sifakis were awarded for model checking (the behavior of a program or protocol is

modelled by a finite automaton), and in 2020 Aho and Ullman were awarded for algorithms underlying programming

language implementation (including a substantial transducer component in the context of parsing).

The classical model of an automaton inputs a string and returns a Boolean, i.e. a “yes” or “no” value. Outside the

classroom, however, a computer program does not simply produce a Boolean. A program can reformat a file, or it can

execute another program. From the theoretical point of view, the difference between Boolean outputs and other outputs

is frequently irrelevant, since formany computationmodels, Boolean outputs can be used to representmore complicated

outputs. For example, a string-to-string function canbe represented as a string-to-Boolean function, i.e. a language, which

inputs the string and an indicated bit position in the output, and returns the value of that bit. For Turing machines, say

running in polynomial time, there is no difference between a string-to-string function and its language representation, so

one can easily restrict attention to languages. However, finite-state devices, such as automata, are not capable of counting

bits, and therefore one cannot represent a string-to-string functionusing an automaton that reads an input string together

with an indicatedoutputposition. Hence the studyoffinite-state deviceswhichproducenon-trivial outputs (suchdevices

are called transducers) is not the same as the study of automata as language recognizers.

Transducers have been around since the beginnings of automata theory; in fact, the early authors understood au-

tomata to have string outputs. In their TuringAward paper that introduces nondeterminism, Rabin and Scott advocated

moving to the language approach, writing that theywere “doing awaywith a complicated output function and having our

machines simply give yes or no answers”. Following this advice, much research on automata has focussed on languages,

and not transducers. The present project runs counter to this advice and takes the transducer perspective.

The early transducermodels were one-way automata equippedwith some simple outputmechanism, e.g. each transi-

tion could append a letter to an output string. In recent years transducers have grown in sophistication, reaching a point

where they resemble programming languages, with constructs such as numerical variables, loops, recursion or higher-

order functions. This means that modern models of transducers can now be actually useful programs, as opposed to

being idealized and radically simplified models of useful programs (as in model checking). All of this while retaining the

good decidability properties of automata (transducers are not supposed to be Turing complete, which is framed here as

an advantage: the halting problem is decidable) and their attractive mathematical theory.

The principal goal of this project is to

Identify a notion of finite-state polynomial computation.

Prior work has already produced a satisfactory notion of finite-state linear computation; but the polynomial case is rela-

tively unexplored. We intend to: (a) identify what kind of structures, beyond strings, can be manipulated by finite-state

programs; (b) propose polynomial models that manipulate these structures in a finite-state way; (c) give algorithms for

reasoning about the proposed model, in particular for deciding equivalence; and (d) prove that the proposed model is

unique, i.e. there is no other possible model of finite-state computation.

1

Reg. No: 2022/46/A/ST6/00072; Principal Investigator: prof. dr hab. Mikołaj Bojańczyk

