
A dynamical system is a mathematical concept for modeling an object varying in time, using a fixed
rule that depends on the current state of the object only, and not, for example, on what happened in the
past. Dynamical systems are used in sciences to describe a variety of phenomena, from the trajectory
of a bullet shot from a gun, through the behavior of an individual neuron, to the fluctuations in the size
of populations of species in a food chain. Solutions to this kind of models, called trajectories, describe
the evolution of the states of the modeled item or ecosystem in time. Unfortunately, except for very few
cases, like the flight of the bullet, these solutions cannot be typically given by explicit formulas, and
analysis of the equations by hand is a laborious task that requires thorough mathematical knowledge.
Therefore, computers are often used to get insight into the dynamics more easily. Unfortunately,
numerical simulations involve approximating the real solutions, and thus rarely provide mathematically
reliable results. Moreover, some important solutions are not stable, that is, a small perturbation may
push the trajectory away, and therefore such solutions are difficult to find and to follow.

The main objective of the project is to develop some computational tools for the purpose of
automated analysis of dynamics, primarily aimed at providing mathematically reliable results, and to
apply them to certain systems. Such a method takes a model of a dynamical system as input, conducts
computations, and produces a catalog of important solutions found. It is going to be of great help for
scientists who create the mathematical models in order to answer such questions as: “What are safe
amounts of fish that one can catch from a lake each season to make sure the population does not die
out?”

Automated analysis of dynamics is not a straightforward task. One problem is that computers can
only deal with finite data structures, so everything must be described in such a way. The first basic idea
is thus to analyze the dynamics in a bounded area subdivided into a rectangular grid like a sheet of
checkered paper. Then one can describe the changes of states in a dynamical system as a rule that says
which square one moves to from each square in the grid. In order to capture unstable trajectories, we
engage Topology. This is a branch of mathematics that primarily deals with the notion of continuity.
The reasoning that applies here is similar in spirit to the following fact: If we keep one end of a rope
under water (altitude < 0) and the other end in the air (altitude > 0) then the rope must cross the
water surface at some point (altitude = 0). This principle also works in abstract mathematical setup,
except the reasoning is more subtle. As a result of applying this method, one obtains mathematically
proved information on equilibrium states, periodic behavior and stable and unstable trajectories.

Another topic concerns the analysis of dynamical systems that exhibit chaotic dynamics. The
existence of erratic behavior of solutions, which makes the impression of randomness, even though it
is completely deterministic (given by the equation), depends very sensitively on the choice of specific
values of parameters of such systems. Estimating the actual amount of such parameters is a highly
nontrivial task. Even if one can see in numerical simulations that the dynamics is chaotic-like for
a large percentage of the parameters, obtaining a mathematically strict estimate turns out to be
unexpectedly challenging. A step forward towards achieving this goal is computing a rigorous estimate
of “expansivity” of a map, that is, the rate at which points that are near each other are pushed away
in forward time. By combining known and new algorithms with advanced numerical calculations, we
expect to develop an effective method that will provide accurate estimates at moderate computational
cost.

An especially interesting phenomenon that we also plan to investigate is chaotic itinerancy. It is
the case when trajectories in a dynamical system stay for a prolonged time around certain states, and
then start wondering in a hard to predict way, until they get attracted by another state. But they do
not remain at this state indefinitely, the chaotic wandering suddenly resumes and repeats without any
clear pattern. We plan to analyze mathematical models that experience this kind of behavior in order
to understand them better. Such systems are used to explain the way our brains work: the chaotic
itinerancy corresponds to wandering from one thought to another, and coming up with new ideas.
These models are also used in artificial intelligence (neurorobotics) to design spontaneous behavioral
switching of robots. It is thus important to get better insights into the various models before we allow
real robots act in this kind of an unpredictable way.
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