
Transport equation in the modern theory of partial differential equations

This project is devoted to the generalization and application of techniques known for the transport
equation for new challenges arising in applied mathematics. Transport equation is probably the simplest
one in the theory of partial differential equations and can be written as

∂tµt + ∂x(b(t, x)µt) = 0. (1)

Originally, the equation was solved by a fundamental observation that values at time t = 0 are propa-
gated along curves called characteristics and as a consequence, solutions to (1) are constant on char-
acteristics. Surprisingly, many real-world phenomena can be put in this setting coming from fluid
dynamics, demography, cell biology or epidemiology.

In this project, we want to focus on the following objectives:

Objective 1. Transport equations on metric spaces. Formulation (1) requires linear structure of
the underlying domain so that derivatives are well-defined. On the other hand, equivalent formulation
of (1) as a propagation of u on characteristics can be generalized to an arbitrary metric space. Many
models studied in the current literature are of this form. As a prominent example serves traffic flows
on network that can be used to assess capacity of the streets or analyze formation of traffic jams.
However, to use such models, one has to be sure that they are mathematically well-posed and this is
the reason why we need to develop underlying mathematical theory.

Objective 2. Optimal control and sensitivity analysis for structured population models.
Models of the form (1) describe dynamics of populations in various areas including demography, cell
biology, immunology or ecology. Therefore, in this part of the project we study version of (1) with
parameter h:

∂tµ
h
t + ∂x(b(h, x)µ

h
t ) = 0, (2)

and we are interested in analysis of functional

J (h, t) =
∫
Rd

F (x) dµht (x), (3)

where µht is a measure solution to (2) while F : Rd → R is a given function. We note that functionals
of the form (3) can be interpreted as quantities of practical importance. For example, for F (x) = 1
this functional provides the total number of individuals in a population. We shall also focus our at-
tention on the nonlinear version of (2) where model functions b and c may depend on the solution itself.

Objective 3. Evolutionary PDEs in roughly time-changing setting. Many real-world phenom-
ena are described by equations with operators rapidly changing with time. As a prototypic example
may serve the flow of electrorheological fluids. These fluids are described by the system of equations:

div v = 0,

∂tv + div(v ⊗ v)− S = −∇p+ g +∇E ·P,

where v = (v1, v2, v3) denotes the velocity of the fluid, S is the viscous stress tensor, E is the electrical
intensity and P is the polarization. When an electric field is applied, the viscous stress changes dramati-
cally and behaves like S ∼ |D(v)|r(t,x)D(v) with some function r(t, x) where D(v) = 1

2

(
∇v + (∇v)T

)
is a symmetric part of ∇v. If changes in electric field are highly irregular, function r(t, x) may not be
assumed to be continuous in time t. Although such problems does not seem to be connected with (1),
their mathematical analysis requires a nice trick known from the theory of renormalized solutions to
(1) (corresponding to the case where b is less regular function).
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