
In virtually all aspects of modern society – from governance and administration to business, science, and
social media – the demand for efficient computing and data processing escalates in an unprecedented rate. This
demand is not only about quantity (of computational power, number of servers and software developers), but
mostly about the complexity of the tasks set before computer systems. This raises an important question of
how to manage this complexity, and what kind of tools and methodologies are possible to aid construction and
maintenance of complex systems.

On the side of software, the key word is abstraction: the ability to think in terms of high-level logic of the
system, without the need to deal with the low-level technical details altogether. One example why tools that
provide abstraction seem essential is the increase of parallelisation and distribution of the systems, which means
that they are realised on a number of independent computing units, be they different cores in a processor, as in
a PC or a smartphone, or thousands of remote servers in a cloud-computing scenario. If managed “manually”,
this leads to a number of problems not directly related to the high-level logic of the system, such as organising
communication and synchronisation of different parts of the system, dealing with them competing for shared
resources or deadlocks (occurring when there are two computations, each waiting for the other one to perform
an action, which results in a global freezing of the system).

The tool that mediates between the logic of the program and the low-level implementation of the system is
a programming language. In recent years, to help the programmers manage the complexity of the constructed
systems, the mainstream industrial software development has turned its attention to functional programming,
which is not a new idea (as it originated in the 1950s with the LISP programming language), but provides a
higher level of abstraction than, say, object-oriented programming. Functional programming is a declarative
paradigm, which means that the programmer defines what is the intended result of the program, rather than
how to obtain it by manipulating the internal state of the machine. An advantage of employing functional pro-
gramming on a larger scale is that it has been one of the foci of academic research on programming languages
and the semantics of computing, which means that one can benefit from an abundance of results about the
intricacies of semantics, type systems, testing, formal reasoning, and so on.

The proposed research project is in the area of a new addition to the functional-programming landscape:
algebraic effects. In general, effects is a common name for constructs in a programming language that allow
the program to do more than just compute a value given some initial arguments. Examples include: perform-
ing an input/output operation, changing the value of a variable, communicating with another thread/process,
throwing an exception. One strength of functional programming is that it discourages using effects if they
are not necessary, as a piece of code that is pure (that is, does not use any effects) is much more predictable,
reusable, as wall as easy to understand, maintain, test, and reason about. One of the most important questions
in the programming language research today is how to incorporate effects and not lose these desired properties.
Algebraic effects appear to be the most promising course of action to obtain this.

The more specific goal of this project is to study two aspects that are important for a wider adoption of
algebraic effects in practical programming and in understanding their mathematical foundations. The first one
is to study the issue of how effects compose, that is, how one can program with a number of different effects at
a time. Different effects can interact with each other in a number of ways, and the things become more difficult
when we employ the full power of abstraction – for example, when we cannot statically tell which effects will
be in use when we execute the program.

Another aspect is incorporating coinduction, that is, understanding a program with effects not as a batch
computation that gives some final value for the initial input values, but as an interactive system. From this
angle, even specifying what it means for a program to be “correct” is more difficult, since it is more about the
observable behaviour, which is more complex to capture from the formal, mathematical point of view.

The overall expected result of this project is to establish a mathematical underpinning of these two aspects
of effects. This will give a firm basis for building better-behaved and more expressive programming languages.
Since algebraic effects already have a great impact on the way programming languages are designed and un-
derstood, solving these two issues should have a noticeable impact on the theory and practice of programming.

Reg. No: 2018/31/D/ST6/03951; Principal Investigator:  dr Maciej Adam Piróg


