
1. The notion of infinity depends on the definition of finiteness. In modern mathe-
matics (i.e. in Cantor’s set theory), notions of finiteness and infinity refer to sets.
Accordingly, infinite numbers (cardinal and ordinal numbers) characterize infinite
sets.

Finite numbers measure finiteness. Finite numbers are positive integers. Consi-
dering their arithmetic, one can add these numbers, multiply and compare them
in terms of lesser-greater. Accordingly, one can also add infinite numbers, multiply
and compare them. However, the arithmetic of infinite numbers does not share all
of the characteristics of finite numbers. For instance, addition and multiplication of
ordinal numbers is not commutative, i.e. a + b does not always equal b + a and ab
does not always equal ba. We find more differences when compare the arithmetic
of infinite and rational numbers: there are neither negative, nor fractional infinite
numbers, i.e., when a is an infinite number, then neither −a, nor a/2 are defined.

2. This project aims to develop a new theory of infinity. The mathematical aspects
of the theory are based upon ideas introduced by L. Euler and J. Conway, while its
historical perspective is rooted in Euclid’s Elements and Optics.

The theory we propose includes Cantor’s ordinal numbers, therefore it extends
the current mathematical theory of infinity. In this theory, however, the definitions
of operations differ from those provided by Cantor in such a way that, e.g., the
multiplication of ordinal numbers is commutative. Moreover, in this theory one can
consider both negative and fractional infinite numbers, and therefore, in this theory,
there are negative and fractional counterparts of Cantor’s ordinal numbers.

3. We will provide the historical, philosophical, and mathematical foundations of
this theory. We will show that in ancient Greek mathematics, the notion of finite-
ness referred first of all to line segments. One could add those segments, take their
fractional parts or compare them in terms of lesser-greater. Line segments also had
the Archimedean property: when a < b, then by taking subsequent multiples of the
segment a, such as a + a, a + a + a etc., we obtain a segment greater than b, i.e.,
a+ ...+a > b. Thus, at the very beginning of mathematics, finite objects shared the
Archimedean property, and one could take their parts. This meaning of finiteness
serves to be the starting point of our theory of infinity.

We will show that in the 17th century, the multiplication and division of segments
was introduced. We will show, that in the 18th century, infinite segments (numbers),
i.e., segments that violate the Archimedean property, were applied in mathematical
proofs. One could add those infinite numbers, as well as multiply and compare them
in terms of lesser-greater. Moreover, negative and fractional infinite numbers were
also applied.

4. When a is an infinite number, then 1/a is an infinitesimal. Infinitesimals charac-
terize non-Archimedean systems, which is why in the the title of our project, infinity
stands in opposition to infinitesimals, rather than finite numbers, as it is in Cantor’s
theory. In our theory, infinite numbers from the very beginning belong to a struc-
ture known today as a non-Archimedean ordered field, as a result, the arithmetic of
infinite numbers is the same as the arithmetic of fractions.

Reg. No: 2018/31/B/HS1/03896; Principal Investigator:  dr hab. Piotr  Błaszczyk


