
The project is in a central subject of algebraic geometry. Algebraic geometry is the study of algebraic
varieties which are sets of solutions of systems of polynomial equations. Such context is special
enough to acquire tools from different parts of mathematics such as algebra, analysis, number theory,
differential equations and rich enough to model problems not only in other branches of mathematics
but also in theoretical physics. For this reason algebraic geometry is among the most studied branch
of mathematics. The leading problem of algebraic geometry is the problem of classification of all
algebraic varieties. However, algebraic varieties form a so vast collection of objects there is no hope to
classify them in general. Instead, one restricts to special classes of varieties which are important for
various reasons. Among the most important types of algebraic varieties one find varieties with trivial
canonical class, so called Calabi–Yau type varieties. Their importance in algebraic geometry follows
from the special place such varieties occupy in the classification theory; they are in some sense on the
boundary between the better understood class of Fano type varieties and the varieties of general type
for which there is no hope of general understanding. The classification of Calabi–Yau type manifolds
starting from dimension 3 is one of the biggest challenges in algebraic geometry. Let us point out
that all Calabi–Yau type varieties can be built using three classes of varieties: Calabi–Yau manifolds,
tori, Hyperkähler manifolds. The motivations for the study of varieties with trivial canonical class go
far beyond the problem of classification. As very natural objects these varieties appear in different
contexts in many branches of mathematics and theoretical physics. Our research focuses on the study
of Calabi–Yau manifolds and Hyperkähler manifolds.

One of the main motors of recent development of the theory of Calabi–Yau manifolds is the fact
that they are used in physical string theory to model the shape of the universe. Roughly speaking
string theory postulates that the universe is fibered by tiny Calabi–Yau threefolds in which there
are vibrating strings. The behavior of the string on the Calabi-Yau threefolds determines the type
of particles that we observe. For that reason understanding Calabi–Yau varieties is crucial for the
understanding of the string theoretical model of the universe. The theory of Calabi–Yau threefolds is
developed in parallel with that of string theory and as such it is full of conjectures motivated by physics.
The most famous is the mirror symmetry conjecture whose mathematical counterpart postulates that
Calabi–Yau threefolds arise in pairs having some of their structure interchanged. Some mathematical
versions of mirror symmetry have been proven for the easiest to handle types of Calabi–Yau threefolds,
so-called complete intersections in toric varieties. Outside this class the conjecture is widely open and
motivates the need to find new non-standard constructions of Calabi–Yau manifolds. In the world of
Calabi–Yau manifolds there are also other intriguing symmetries that are not yet understood. For
example wall crossing in so-called GLSM theories may give rise to pairs of Calabi–Yau manifolds which
are in some sense equivalent. Conjecturally, such manifolds should be so-called Fourier–Mukai partners
and should admit the same mirror. Furthermore, it appears that these partners might also be related
by topological cut and paste construction via so-called L-equivalence. Since the theory of GLSM and
wall crossing in so-called abelian GLSM gave crucial insight into the proof of mirror symmetry for toric
complete intersections, we expect that the understanding of this phenomenon should give new insight
to the mirror symmetry in general. Our aim is to provide new natural constructions of Calabi–Yau
manifolds related to GLSM with non-abelian gauge group and investigate wall crossings in order to
prove Fourier-Mukai duality and L-equivalence of different phases partially solving conjectures in the
subject.

Hyperkähler manifolds are mysterious manifolds that are very hard to construct, so hard that there
appeared in the literature a (false) proof that such manifolds do not exist in dimension higher than 2.
Nowadays, we know only 4 types of hyperkähler manifolds, but even in these types the construction of
non-trivial projective elements is a challenge. There are up to now six known constructions of complete
families of projective hyperkähler manifolds and all of them are related to deep and beautiful geometry.
Let us point out that all these known families are in in fact of the same type called K3[n]. Our project
aims at finding new types of constructions but also providing some general setup for the construction
of such varieties. In particular we plan to find the first example of a complete family of hyperkähler
manifolds of generalized Kummer type (these are not of K3[n] type). Hyperkähler manifolds are also
very natural objects and as such are related to other problems and the relation is sometimes very
surprising. For that reason we investigate the geometry ans other features of known and new classes
of hyperkähler manifolds.
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