Let us fix a prime number p and a nonzero rational number x. Then x can be uniquely written in the form $\frac{a}{b} p^{t}$, where $a \in \mathbb{Z}, b \in \mathbb{N}_{+}, p \nmid a b$ and $t \in \mathbb{Z}$. The exponent t in the above representation is called the p-adic valuation of the number x and we denote it by $\nu_{p}(x)$. In case of $x=0$ we put $\nu_{p}(0)=+\infty$. Then we define for any rational number x its p-adic norm $|x|_{p}:=p^{-\nu_{p}(x)}$. Let us note that the p-adic norm gives a metric space structure on the field \mathbb{Q}. The completion of \mathbb{Q} with respect to p-adic norm is a topological field and it is called the field of p-adic numbers \mathbb{Q}_{p}.

Study of p-adic valuations of terms of a fixed sequence of rational numbers is in general a nontrivial and interesting issue. Many mathematicians are working on it. The knowledge of the p-adic valuations of terms of a fixed sequence allows us to state if they are integer and helps us with solving some Diophantine equations. If $n \in \mathbb{N}$ then $H_{p}(n)$ is the number of solutions of the equation $\sigma^{p}=i d$ in the group S_{n}. A qualitative description of values $\nu_{p}\left(H_{p}(n)\right)$ was obtained for any prime number p. Let us notice that $H_{p}(n)$ is exactly the number of permutations $\sigma \in S_{n}$ which can be written as a product of pairwise disjoint cycles of the length p. In the same way one can define for any nonnegative integer $d \geq 2$ the number $H_{d}(n)$ as the number of permutations $\sigma \in S_{n}$ which can be written as a product of pairwise disjoint cycles of the length d. It is worth to note that there is not known a description of p-adic valuations of the numbers $H_{d}(n)$ if $p>d$ (even for $d=2$).

For a set $A \subset \mathbb{N}$ we define its ratio set as $R(A)=\left\{\frac{a}{b}: a, b \in A, b \neq 0\right\}$. The results on denseness of sets $R(A)$, where $A \subset \mathbb{N}$, in the set of positive real numbers are known for several decades. On the other hand the issue of ratio sets of subsets of \mathbb{N} in the fields of p-adic numbers is relatively new. Hence it contains many unsolved problems, for example p-adic denseness of the sets $R(A)$, where A is the set of values of a given quadratic form or the set of sums of n powers of non-negative integers with exponent 4 or 5 , where $n \in \mathbb{N}_{+}$is fixed. Another open problem in this area is the question about existence of a partition of \mathbb{N} into two subsets A and B such that for each prime number p none of the sets $R(A)$ and $R(B)$ is dense in \mathbb{Q}_{p}.

The first aim of the project p-adic properties of certain combinatorial sequences and subsets of the set of non-negative integers refers to obtaining a qualitative description of p-adic valuations of the numbers $H_{d}(n)$, where $p>d \geq 2$ are fixed values. Moreover, I intend to obtain results concerning combinatorial identities for the numbers $H_{d}(n)$, prime divisors of these numbers and periodicity of their remainders from division by a fixed positive integer. The second aim is to study p-adic denseness of ratio sets of values of quadratic forms and sums of fourth and fifth powers of non-negative integers. Additionally, I plan to consider ratio sets of sums of higher powers. Furthermore, I intend to answer the question if there exist two disjoint subsets of \mathbb{N} such that their union is whole \mathbb{N} and none of their ratio sets is dense in \mathbb{Q}_{p} for any prime number p.

