
Modern society increasingly depends on complex computer systems, so, for our comfort and
safety, we need them to be reliable, easy to maintain, and extendible with new features. These re-
quirements are especially hard to attain on the software side. We all fall victim to this from time to
time, when a ‘bug’ causes a program not to behave as expected, or crash altogether. In some systems,
such as those controlling moving vehicles or medical equipment, it is of paramount importance that
such incidents are avoided.

One of the goals of computer science is to improve this situation by proposing new methodolo-
gies of creating software and ensuring its correctness. One of such methodologies, which has been
getting a lot of attention recently, is functional programming, in the form of functional programming
languages or functional features added to mainstream programming languages. Its strength lies in a
very precise, highly mathematical approach and modularity, which allows the programmer to com-
pose programs out of small, easy-to-understand components. As a result, functional programming
helps the programmer to quickly deliver software of high quality.

Within the research area of functional programming, a recent advancement has been made by the
introduction of algebraic effects. They allow the programmer to structure and reason about their pro-
grams using tools from abstract algebra (a branch of mathematics), reaching high levels of precision
and readability of the code. Algebraic effects have been an active topic of research in the program-
ming languages community, both on the more practical side—resulting in a couple of new, experi-
mental programming languages, and extending the existing ones—and the theoretical side, finding
applications even in remote areas, such as quantum computing.

One important open problem in the area of algebraic effects is a discrepancy between how they
are implemented in practical applications and how they are understood on the theoretical side. In the
latter setting, algebraic effects come with a natural notion of algebraic specification, which allows one
to formally describe some properties of the components used in the code. Then, these properties are
always valid for the component, ensuring that it will never misbehave. Moreover, such an algebraic
specification can determine the component in a unique way, which would free the programmer from
coming up with a (possibly erroneous) implementation. The challenge, and the topic of this project,
is to try to find out a way to express the power of algebraic effects with specifications in practical
programming.

The problem arises, because the theoretical descriptions of algebraic effects use mathematical
structures that are not directly expressible in programming. Hence, this project proposes to intro-
duce alternative structures to describe algebraic effects, ones that will be more amenable for practical
engineering. In particular, this project proposes to use continuations, which are structures used to
express the control flow of programs, that is, broadly speaking, the order in which different tasks are
performed by the machine.

The goals of this project include a better understanding of both algebraic effects and continuations
on the theoretical level, and inventing new mathematical structures that can be translated into practical
implementations. Additionally, a set of experimental tools are to be developed to automate the process
of extracting implementations from specifications. In the long run, it leads to development of new
programming methodologies, which support efficiency and robustness of the software development
process.

Reg. No: 2016/23/P/ST6/02217; Principal Investigator: dr Maciej Adam Piróg

