
Scalable Reasoning about Concurrent Imperative Programs

Filip Sieczkowski

Anyone who has ever written even a single computer program should know how easy it is to make a

mistake that would result in an incorrect result. However, what most people might not recognise is that

this problem does not disappear entirely with experience: whenever we use a computer to solve a complex

problem, we can be almost certain that some errors will be made. The process of testing the software are

indispensable when it comes to noticing the existence of a problem or locating it within a particular part

of the program, but they can never give us absolute certainty that an error isn't lurking somewhere in the

code. It is the goal of the methods of program veri�cation to provide us with such guarantees, and our

project lies within that area of research.

One of the fundamental divisions within formal veri�cation of programs is the distinction between

automated methods, which can analyse the code of a program without the necessity of human interaction,

and the manual techniques, where the crucial part of the process is the human interaction, often with some

aid of the machine. This distinction stems from the known limits on the expressive power of computers:

most of the interesting properties of programs lie squarely outside what computers can reason about on

their own. Hence, automatic veri�cation systems concentrate on showing that certain classes of errors

are absent from the program, but do not consider the full correctness of the program. The human-driven

methods, on the contrary, tend to allow the user to formulate precise speci�cations, i.e., intended behaviour

of programs and their parts, and then prove that these speci�cations are met by the program code.

In general, program veri�cation is a very di�cult problem, and the research in the area has been carried

out for more than half a century. However, it was only at the turn of the last century that we discovered

techniques that allow us to reason e�ectively about programs in realistic programming languages. The

crucial aspect of these techniques, known as separation logics, is their modularity � a property that allows

us to construct proofs of correctness of larger programs from the proofs of smaller parts, while abstracting

from a lot of their internal details. In a very real sense this process resembles the process of constructing

the programs themselves. Thus, these techniques can be applied to programs of size and complexity much

beyond what we could tackle before.

One of the most important problems tackled in the area of formal veri�cation in the last decade was

devising reasoning techniques for concurrent programming languages, i.e., languages in which multiple

processes communicate with each other through a shared state which they all can modify. This model

of computation is much more complicated than the traditional sequential models, where the program is

isolated from the outside world � while at the same time, with an increasing number of cores of the

modern day multiprocessors, it is a model that is increasingly more common in the programming practice.

In this project we take up both the questions of full correctness of concurrent programs and their

automated analysis � as well as questions lying at the border of the two areas. Firstly, we work in the

area of concurrent separation logics, where we want to devise proof methods that simplify the reasoning

about programs, while retaining the high expressivity of a lot of the recent work. Secondly, we want

to provide novel ways to guarantee that a program's execution is deterministic, i.e., that for any given

input, the execution can only have a single result. Such a property means in particular that the order in

which concurrent processes communicate does not matter, which should signi�cantly simplify the reasoning

about the program's execution � and consequently enhance the programmer's understanding of the code.

The �nal task that we are going to work on is particularly interesting, though. We plan to research

the possibility of utilising the speci�cations of concurrent libraries and data structures in the automated

reasoning about the code that only uses these libraries. In practice, developing such techniques would

mean that it is su�cient to prove small, crucial components of a vast concurrent program in order to

automatically establish some guarantees about the entirety of the code.

1

Reg. No: 2016/23/D/ST6/01387; Principal Investigator: dr Filip Sieczkowski

