Reg. No: 2016/21/N/ST6/01032; Principal Investigator: mgr Maciej Maria Bendkowski

Maciej Bendkowski

Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,

Jagiellonian University, ul. Lojasiewicza 6, 30-348 Krakow

QUANTITATIVE ASPECTS OF COMPUTATIONAL COMPLEXITY IN LAMBDA CALCULUS

DESCRIPTION FOR THE GENERAL PUBLIC

With the dawn of modern computer science in the 1930s, multiple mathematical theories emerged
aiming at formalizing the notion of computation, such as the famous Turing machines, p-recursive
functions or lambda calculus. Although all were proven equivalent, each one of them proposed a dif-
ferent approach to the nature of computability. One prominent example is lambda calculus, developed
by the American mathematician and computer science pioneer — Alonzo Church. Though originally
meant as an alternative foundation of mathematics, lambda calculus quickly became popular in the
emerging computer science, expressing the theoretical capabilities of modern computers. Nowadays,
lambda calculus serves not only as the theoretical foundations of computer science, but is also used
in practical applications including artificial intelligence, automated theorem proving, formal software
verification and many more.

Despite its age, lambda calculus is still actively studied. Looking at programs expressed in the
language of lambda calculus as combinatorial objects, we ask the natural question about their typical
behavior and properties. Suppose we have in mind a fixed property P. In our line of research, we
ask about the limit behavior of the fraction of programs of size n satisfying P in the set of programs
of size n. If this limit exists, we have the asymptotic density of programs satisfying P — the main
tool in studying properties of typical programs of lambda calculus. Of course, the most interesting
properties we ask about are semantic in nature, i.e. properties which do not explicitly depend on the
program syntax. A famous example of this type of properties is the halting property asserting that
the represented computations will eventually stop. Previous research uncovered a striking discrepancy
of this property depending on the program representation. And so, based on the assumed model,
asymptotically almost all programs halt, or there exist a non-trivial fraction of programs looping ad
infinitum.

It is worth noticing that quantitative investigations are not entirely theoretical, but have interest-
ing practical applications, including software verification. In recent years, we observe an increasing
popularity of software testing involving random computer-generated data. Program subclasses satis-
fying requested asymptotic properties yield new tools in this technique of software testing used, e.g. in
testing functional programming language compilers.

In our project we propose to study the computational complexity distribution of typical lambda
terms. We plan on investigating the impact of substitution on the average time complexity of rep-
resented programs. We wish to compare different evaluation strategies in the case of their typical
behavior. As proven by our previous research, this approach allows to find new connections between
semantic properties of programs and their syntactic representation, raising hopes for a deeper under-
standing of the typical computational complexity of random lambda terms.



