1 Introduction

We would like to solve combinatorial problems emerging fromreal-life applications fast. However, for many problems we do not know efficient al gorithms. We would like to know if it is because we have not devel oped a required approach or tools yet or perhaps it is impossible at all. In the latter case it suggests to reformulate our statement of the problem. The knowledge why the problemis hard may help us to find a sui table restatement of the problem which is actually efficiently solvable (e.g. approximation, FPT and kernelization, smoothed anal ysis, noisy input model etc.).

On the other hand if we al ready know efficient al gorithms for the problem, we woul d like to know whether they are optimal. If not, the knowledge what compl exity we should expect can be a val uable hint during the design of a new al gorithm.

Our goal is to discover the limitations of the current al gorithm theory and the current problems.

2 Research Project Objectives

In particular under strong complexity assumptions we would like to provetight lower bounds for the complexities of well known problems.

21EdgeColoring

The problem of Edge Coloring or in other words the problem of dividing the set of the edges of a graph into matchings was studied about one hundred years ago by Kőnig. This resulted in thefamous Kőnig's Theoremfrom 1916. A nother important results are a Shannon's Theorem for multigraphs from 1949 [11] and Vizing's Theoremfor simple graphs from 1964 [13]. The NP-hardness of EdgeColoring was an open problemfor sometime and was finally proven in 1981 by Holyer [6] by producing a 3 -regular instance and in 1983 by Leven and Galil [8] by producing ak-regular instance for any $k \geq 3$. TheEdgeColoring problem was studied in a great number of publications and in many different settings. The best exact al gorithm in the general case works in $\mathrm{O}^{*}\left(2^{m}\right)$ time[1].

22 Set Cover

The Set Cover problem is one of the original Karp's 21 NP-complete problems from 1972 [7]. It is equivalent to Hitting Set and captures many problems likeVertex Cover, Dominating Set, Set Packing and others. TheSet Cover problemhas a long story of lower bounds for the approximation ratio and in 2013 Dinur and Steurer showed that it cannot be approximated with a factor (1 $\mathrm{o}(1)) \cdot$ Inn under the assumption of $\mathrm{P} \neq \mathrm{NP}$ [3]. This bound is tight due to the greedy al gorithm [2]. The problem is also W2]complete. Although we know that the problemis very hard still we do not know if it can be solved in $\mathrm{O}^{*}\left(2^{\varepsilon n}\right)$ for any $\varepsilon<1$. Such a bound would betight because of a dynamic programming al gorithm from 2004 [4].

23a:b-Coloring

Thea:b-Coloring problem was introduced in 1976 by Stahl [12] as a continuation of the line of research from [5]. The problem is known under many names: a:b-Coloring, b-TupleColoring, b-Fold Coloring, MultipleColoring and was considered in many publications. The Multi-Coloring problem is a variant of the problem such that the number of required colors is given for each vertex separately. The exact complexity of the a:b-Col oring problem is really intriguing because on one hand it is a general ization of the classi cal Graph Coloring problem, but on the other hand it seems to be very close to the linear programming rel axation of the Graph Coloring problem (Fractional Chromatic Number) [9,10].

24 Further Goals

Very recently there were quite a few results on showing lower bounds for polynomial ly sol vable problems like Longest Common Sequence, Edit Distance, Local String Alignment, Dynamic Strong Connected Components, Dynamic Single Source Reachability, Dynamic Graph Diameter, Graph Diameter (for approximation, in contrary to our goal) and Orthogonal Vectors. All of these results evolved as consequences of the study on the complexity of the NP-hard problems. They are using the same methodology (reductions fromSAT, sometimes indi rectly) as we do in our research. Therefore we plan to study polynomially sol vable problems like: Triangle Detection, All Pairs Shortest Paths, Graph Diameter, 3SUM and OptimumBinary Search Tree in order to found their lower bounds.

3Implications

The practical application of this knowledge is straightforward. For particular formulations of the real-life problems we know what complexity we should expect. We know then if there are chances for the existence of thefaster al gorithms, or we know that in
order to solve our practical problemfaster we need to reformulate the statement. Therefore such results are very important al so fromthe practical point of view.

References

[1]
A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput, 39(2):546-563, 2009.
V. Chvatal. A Greedy Heuristic for the Set-Covering Problem Mathematics of Operations Research, 4(3):233-235, 1979.
[3]
I. Dinur and D. Steurer. Analytical approach to parallel repetition. In D. B. Shmoys, editor, Symposiumon Theory of Computing, STOC 2014, New York, NY, USA, May 31 - J une 03, 2014, pages 624-633. ACM, 2014.
F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) al gorithms for the dominating set problem. In J. Hromkovic, M. Nagl, and B. Westfechtel, edi tors, Graph-Theoretic Concepts in Computer Science, 30th International Workshop,WG 2004, Bad Honnef, Germany, J une 21-23, 2004, Revised Papers, volume 3353 of LectureNotes in Computer Science, pages 245-256. Springer, 2004.
D. Geller and S. Stahl. The chromatic number and other parameters of the lexicographic product. 1975.
I. Holyer. The np-completeness of edge-coloring. SI AM J. Comput., 10(4):718-720, 1981.
R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM Research Symposia Series, pages 85-103. Plenum Press, New Y ork, 1972.
D. Leven and Z. GaliI. NP completeness of finding the chromatic index of regular graphs. J. Al gorithms, 4(1):35-44, 1983.
C. Lund and M. Y annakakis. On the hardness of approximating minimization problems. J. ACM, 41(5):960-981, 1994.
[10]
E. R. Scheinemman and D. H. Ullman. Fractional graph theory: a rational approach to the theory of graphs. Courier Corporation, 2011.
[11]
C. E. Shannon. A theorem on col oring the lines of a network. J. Math. Phys., 28:148-151, 1949.
[12]
S. Stahl. n-tuple colorings and associated graphs. J ournal of Combinatorial Theory, Series B, 20(2):185-203, 1976.
[13]
V. G. Vizing. On the estimate of the chromatic class of a p-graph. Diskret. Analiz, 3:25-30, 1964.

This document was translated fromL ${ }^{A} T_{E} X$ by $\underline{H} \underline{E} \underline{\underline{V}} \underline{E} \underline{A}$.

