
In modeling many phenomena in the surrounding world stochastic processes play a signi cant role. Examples include different
processes: physico-chemical (e.g. dffusions), biological (genes transfer between consecutive generations) or economic (modeling
price changes of nancial assets). Using the last example, we will explain what the natural questions about stochastic processes are
and what speci cally we are going to explore.
     In 1900, L. Bachelier proposed modeling of price changes on the stock market by means of a random process, presently
known as a Brownian motion Bt. However, since increments of the Brownian motion does not depend on its value at the present
time, the better model is such that the increments are proportional to the initial value. Intuitively it is clear that it is much more
likely that the price will increase by 10 EUR if the initial share value is 100 EUR than if it is 5 EUR. This revised model was
proposed by P. Samuelson in 1963: if St denotes the price of a share at the time t then St = seσBt+μt, where s>0, σ and μ are some
constants.
     Using this model, Black, Scholes and Merton in 1973 obtained a formula, known as the Black-Scholes price formula,
describing the valuation of options, for which in 1997, Merton and Scholes received the Nobel Prize in economics. However, this
formula does not always work well, since the model assumes that the share  price changes continuously. This is not very
realistic, since at the moments of uncertainty in the market the price of shares may be very volatile and often moves by jumps.
Therefore the researchers and financial practitioners begun to examine the usefulness of models of the form Xt = seXt , where X t
is a Lévy process. The process Xt has independent and stationary increments and usually changes its value by jumps. The natural
questions posed by economists and investors are as follows: what is the probability that next month the share price will rise, and
how much it will increase; whether the price will reach a level required by the investor (at which the shares will be sold), and if
so, what is the probability that it will take longer than the time t. At the moment the target level occurs and the shares are sold
the process is terminated and this is modeled by killing the process after reaching or exceeding the required barrier.
     Now, let us describe the same issue in the language of mathematics. We consider a Lévy process Xt with values in the
multidimensional space Rd and kill it (stop it) at the moment of exiting a set D. We are interested in exact formulas of some
quantities associated with this process, or at least their precise estimates. Such values for the killed process on exiting the set D
are: pD(t, x, y) which is the transition probability that the killed process moves from x to y in time t; the distribution of τD (x)
which is the first moment the process exits the set D starting from x (the distribution of the lifetime of the killed process); the
Green function GD(x, y), that is the density of staying time of the killed process at y if the process starts from x; the average
lifetime  and the Poisson kernel, which is the density of the distribution of the process at the moment it  leaves the set D.
     For a general Lévy process and any open set D the above questions are very difficult to address. Therefore we intend to
investigate Lévy processes with characteristic exponents possessing certain nice scaling properties. We will try to provide 
specific formulae (if possible) or precise estimates and asymptotics of transition probabilities, Green functions and Poisson
kernels of such processes, killed on exiting a fixed set.
     It turned out that the above described process of Samuelson St called the geometric Brownian motion is one of the
coordinates of a Brownian motion in a hyperbolic space. Since α-stable processes, 0 <α < 2 proved to be, in many cases, better
models  than the Brownian motion, we try to explore the α-stable hyperbolic process.
     Another class of processes that we want to study, are d-dimensional self-similar processes. The process Xt is self-similar in
scale α>0, if for some c> 0 processes cα Xct and Xt have the same law. Such processes are used for modelling the physical and
cosmological phenomena in which a suitable change in the scale of time and space does not change the law of the process. The
trajectories of such processes are fractals. For multidimensional self-similar processes our objective is to obtain a description,
analogous to the one, existing in one-dimensional case. Such a description would enable better understanding of the structure and
behavior of self-similar processes.


