
One of the most important common features of most applications of mathematics to other branches of science is the need to solve
equations. On the whole, however, if we allow a very general form of equations, the problem is truly difficult, moreover the
structure of solution set itself, for an equation in question, might be very complicated. For that reason mathematicians, in general,
concentrate their efforts on very special classes of equations and the problem of finding solutions (which often is simply
impossible to solve) is replaced by questions of a sort:  what are the properties of the solution set?, when do two equations have
the same solution set? etc.

The class of equations that is the base of our project are polynomial equations with two complex variables, i.e. equations like: 
x2+y2+i=0,   y2=x2+x+1.

The common feature of all such equations is the fact that their solutions near non-singular points locally look like the complex
plane. Hence if we restrict ourselves to non-singular equations and we perform the natural compactification (through the so called
projectivization) of the solution sets, then the solutions we obtain shall be surfaces, which locally admit the same analytical
structure as the complex plane. Such surfaces are called Riemann surfaces and up to continuous deformation they look like the
surfaces below.

(From left to right we have respectively a sphere, torus, surface of genus 2, surface of genus 3 etc.) However, the picture above is
misleading, as presenting surfaces up to a continuous deformation erases the information on the complex structure, which is
integral part of a Riemann surface. What we see on the picture above is just a carrier of the structure (so called topological type) -
on every surface of genus g>0 there exist infinitely many different complex structures and our project is mainly devoted to the
studies of those structures.

A very important notion, that distincts some of Riemann surfaces X is the one of automorphism f:X→X, that is a bijective
transformation of X which preserves the complex structure (meaning that after locally identifying the domain and image of the
transformation with a subset of a complex plane, f is holomorphic).

Most of the Riemann surfaces admit no nontrivial automorphisms, so it is a very interesting problem, to describe or classify those
Riemann surfaces, that actually have automorphisms. In the language of equations, Riemann surfaces with nontrivial
automorphisms correspond to equations, which admit algebraic automorphism, that is one can employ a nontrivial algebraic
change of variables in the equation in such a way, that the equation itself does not change (in the applications usually it means that
the phenomenon described by the equation has sort of symmetry or conservation law). Such situation occurs for example with the
equation:

y2=x2+x+1.
Here we can change the variables by substituting (x',y')=(x,-y) and as a result the equation does not change. This means, that there
is a nontrivial automorphism of the Riemann surface, which corresponds to the solution set of that equation. In this very example,
the surface is a torus and the automorphism described above can be represented as a 180o rotation around the axis seen in the left
part of the picture below.

The notion that generalizes the example above are the so called hyperelliptic Riemann surfaces - these are the surfaces of genus
possibly greater than 1, but admitting automorphism for which the geometry of the action is the same as on the picture above (i.e.
the orbit space of the action is a sphere). Our project will be largely devoted to the studies of automorphisms of Riemann surfaces,
for example we will deal with the problem of topological classification of possible actions on such surfaces.

Another interesting phenomenon is the fact, that in certain equations with complex coefficients one can change the variables in
such a way, that the resulting equation has real coefficients (that is a so called real form of the equation we started with). For
example in the equation: x2+y2=i, gdzie dokonując zamiany zmiennych:

(x',y')=(i√ix,i√iy) or (x',y')=(√ix,√iy) 
and the resulting equations are respectively:

x2+y2=1 i x2+y2=-1.
The existence of such a change of variables means, that the surface corresponding to the original equation's solution set has a
symmetry (understood as an antiholomorphic automorphism). In such a way studying real forms of equations reduces to studying



symmetries of the corresponding Riemann surfaces. In the example above the original equation's solution set is a sphere, and the
substitutions we gave (and so the resulting equations with real coefficients) correspond to the two of its symmetries: one of
which is the mirror reflection with respect to the plane containing the equator, and the other is the antipodal transformation. Let us
also observe that the fixed point sets of these symmetries (that is, equator in the first case and empty set in the second case)
correspond to the real solutions of real forms we obtained.

Another important problem which we shall study in the project is the problem of classification of Riemann surfaces of given
genus g. It appears that all such surfaces can be parametrized by points of a very decent space Mg called the moduli space. In our
project we shall study natural subsets Sg, Rg, Hg of this space, called respectively singular, real and hyperelliptic loci, which
parametrize those Riemann surfaces which accordingly admit: nontrivial automorphism, symmetry or are hyperelliptic.

An important element in the construction of the moduli space Mg is the mapping class group (MCG in short). The group is
formed of transformations of the fixed topological space, where we identify those transformations, which differ only by a
continuous deformation. There are many examples known, when the algebraic properties of MCG allow to see interesting
properties of the moduli space Mg. Let usmention the fact, that every transformation in the MCG can be obtained by composition
of (executed in order) transformations of finite order means, that in the moduli space Mg there are no one-dimensional holes (it is
simply connected). For that reason, studying of algebraic properties of MCG is very important and a great part of our project shall
be devoted to that problem.

An example of a nontrivial element in MCG (that is surface transformation) is the so called Dehn twist, which is just a
transformation ta on the picture below - we cut the surface along the curve a, then we rotate one of the endings by 360o, and then
we glue the cutting place back together.

Algebraic properties of the Dehn twists are important, because these elements geneate the MCG, that is any transformation f in
MCG can be obtained by performing a finite number of twists. Such a presentation of f is not, however, unique and important
question arises, asking about the possible relations between Dehn twists (as these relations are the source of decomposition
ambiguity). An example of such a nontrivial relation is the braid relation: tatbta=tbtatb, where ta and tb are Dehn twists along
curves shown in the picture above. There are many different relations known between Dehn twists, nevertheless there are also still
many open questions concerning them and we shall deal this problem in our project.

Another theme in our research shall be properties of three- and four-dimensional manifolds, that is spaces, which locally (in a
small neighborhood of any point) look like standard three-dimensional space R3 or R4 instead of R2 as in the surface case. This
subject, through its connections to theoretical physics for example, is studied intensively by mathematicians throughout the world
for many years now. Our research of such manifolds concentrate on using properties of the surfaces (which are manifolds of
dimension 2) to the construction of higher dimensional manifolds. There are many examples of such constructions, like Heegaard
splittings, isogenous products, Lefschetz fibrations, open book decompositions. Not going into technical details, some classes of
manifolds of dimension 3 and 4 can be studied by using 2-dimensional methods. In such a way our knowledge and experience
acquired while studying mapping class groups and Riemann surfaces shall allow us to study objects potentially much more
complicated.


